

Naggum documentation

	About
	Disclaimer

	Features

	Contribute

	License

	Build guide
	Windows

	Linux

	Documentation

	Naggum usage
	Naggum Compiler

	Naggum Assembler

	S-expression syntax

	Low-level syntax

	High-level syntax

	Naggum Specification
	Features

	Language

	Standard library

Naggum (named in honor of Erik Naggum [https://en.wikipedia.org/wiki/Erik_Naggum]) is a modern statically typed Lisp
variant that is targeting Common Language Infrastructure [http://www.ecma-international.org/publications/standards/Ecma-335.htm] (CLI) runtime
system.

About

Disclaimer

Naggum doesn’t aim to be yet another Common Lisp or Scheme or whatever
implementation. Instead, we are trying to deliver a modern Lisp dialect that
makes use of most of CLI benefits.

Features

Naggum provides both direct access to low-level features of CLI, and allows its
user to define types and functions just like any other high-level language. At
the same time, it combines power of Lisp-inspired metaprogramming (macros) with
strictness of strong-typed language.

Contribute

	Source Code: https://github.com/codingteam/naggum

	Issue Tracker: https://github.com/codingteam/naggum/issues

License

Naggum is licensed under the terms of MIT License. See License.md [https://github.com/codingteam/naggum/blob/develop/License.md] for
details.

Build guide

To use Naggum, first of all you need to build it from source.

Windows

To build Naggum on Windows, just use Visual Studio or MSBuild like that:

$ cd naggum
$ nuget restore
$ msbuild /p:Configuration=Release Naggum.sln

Linux

See general build instructions for Linux in the file .travis.yml inside the
Naggum source directory.

You’ll need Mono [http://www.mono-project.com/], NuGet [http://www.nuget.org/] and F# Compiler [http://fsharp.org/] installed. Some of them may or
may not be part of your Mono installation; just make sure you’ve got them all.

Please note that currently the project is compatible with Mono 4.4.2+.

Below is an example of setting up these tools on NixOS Linux [http://nixos.org/]; feel free to
add instructions for any other distributions.

NixOS Linux

The instructions have been verified on NixOS 16.03. If something doesn’t work, please file an issue.

Enter the development environment:

$ cd naggum
$ nix-shell

After that you can download the dependencies and build the project using
xbuild:

$ nuget restore
$ xbuild /p:Configuration=Release /p:TargetFrameworkVersion="v4.5"

After that, you can run Naggum.Compiler, for example:

$ cd Naggum.Compiler/bin/Release/
$ mono Naggum.Compiler.exe ../../../tests/test.naggum
$ mono test.exe

Documentation

You can build a local copy of Naggum documentation. To do that, install
Python [https://www.python.org/] 2.7 and Sphinx [http://sphinx-doc.org/]. Ensure that you have sphinx-build binary in
your PATH or define SPHINXBUILD environment variable to choose an
alternative Sphinx builder. After that go to docs directory and execute make
html (on Linux) or .\make.bat html (on Windows).

Naggum usage

Currently there are two dialects of Naggum: high-level Compiler and low-level
Assembler.

Naggum Compiler

Command line syntax for Naggum Compiler is:

$ Naggum.Compiler source.naggum... [/r:assembly]...

Each input source file will be compiled to a separate executable assembly (i.e.
an .exe file) in the current directory. You can also pass a list of files to
be referenced by these assemblies.

.naggum extension is recommended for high-level Naggum files.

Naggum Assembler

Naggum Assembler uses low-level Naggum dialect. Command line syntax is:

$ Naggum.Assembler source.nga...

Each input file may contain zero or more assembly constructs. Every assembly
will be saved to its own executable file in the current directory.

.nga extension is recommended for low-level Naggum files.

S-expression syntax

Each Naggum program (either high-level or low-level) is written as a sequence of
S-expression forms. In s-expression, everything is either an atom or a list.
Atoms are written as-is, lists should be taken into parens.

Possible atom values are:

"A string"
1.4e-5 ; a number
System.Console ; a symbol

A symbol is a sequence of letters, digits, and any of the following characters:
+-*/=<>!?..

Lists are simply sequences of s-expressions in parens:

(this is a list)

(this (is ("Also") a.list))

Naggum source code may also include comments. Everything after ; character
will be ignored till the end of the line:

(valid atom) ; this is a comment

Low-level syntax

Naggum low-level syntax is closer to CIL [https://en.wikipedia.org/wiki/Common_Intermediate_Language]. It may be used to define CLI
constructs such as assemblies, modules, types and methods. Every .nga file
may contain zero or more assembly definitions.

Assembly definition

Assembly defitinion should have the following form:

(.assembly Name
 Item1
 Item2
 ...)

Assembly items can be methods and types. Top level methods defined in an
.assembly form will be compiled to global CIL functions.

Type definitions are not supported yet.

Each assembly may contain one entry point method (either a static type method or
an assembly global function marked by .entrypoint property).

Method definition

Method definition should have the following form:

(.method Name (argument types) return-type (metadata items)
 body-statements
 ...)

Method argument and return types should be fully-qualified (e.g. must include a
namespace: for example, System.Void).

The only supported metadata item is .entrypoint. It marks a method as an
assembly entry point.

Method example:

(.method Main () System.Void (.entrypoint)
 (ldstr "Hello, world!")
 (call (mscorlib System.Console WriteLine (System.String) System.Void))
 (ret))

Method body should be a CIL instruction sequence.

CIL instructions

Currently only a small subset of all available CIL instructions is supported by
Naggum. This set will be extended in future.

	Call instruction:

(call (assembly type-name method-name (argument types) return-type))

Currently assembly name is ignored; only mscorlib methods can be called.
Static assembly function calls are not supported yet.

Method argument and return types should be fully-qualified.

	Load string instruction:

(ldstr "Hello, world")

Loads a string onto a CLI stack.

	Return instruction:

(ret)

Return from current method.

Example assembly definition

(.assembly Hello
 (.method Main () System.Void (.entrypoint)
 (ldstr "Hello, world!")
 (call (mscorlib System.Console WriteLine (System.String) System.Void))
 (ret)))

High-level syntax

Every high-level Naggum program is a sequence of function definitions and a
top-level executable statements. Functions defined in an assembly are also
available as public static methods to be called by external assemblies.

Functions are defined using defun special form:

(defun function-name (arg1 arg2)
 statement1
 statement2)

For example:

(defun println (arg)
 (System.Console.WriteLine arg))

Naggum is a Lisp-2, henceforth a function and a variable can share their names.

Currently executable statements may be one of the following.

	Let bindings:

(let ((variable-name expression)
 (variable-name-2 expression-2))
 body
 statements)

Creates a lexical scope, evaluates initial values, binds them to corresponding
names and evaluates the body, returning the value of last expression.

Naggum’s let is a loner: every one is inherently iterative (like let*)
and recursive (like let rec).

	Arithmetic statements:

(+ 2 2)

	Function calls:

(defun func () (+ 2 2))

(func)

	Static CLI method calls:

(System.Console.WriteLine "Math:")

	Conditional statements:

(if condition
 true-statement
 false-statement)

If the condition is true (as in “not null, not zero, not false”) it
evaluates the true-statement form and returns its result. If the
condition evaluates to false, null or zero, then the false-statement
form is evaluated and its result is returned from if.

	Reduced if statements:

(if condition
 true-statement)

	Constructor calls:

(new Naggum.Runtime.Cons "OK" "FAILURE")

Calls an applicable constructor of a type named Naggum.Runtime.Cons with the
given arguments and returns an object created.

Naggum Specification

Features

	based on CLR;

	Lisp-2;

	compiles to CIL assemblies;

	is not a Common Lisp implementation;

	seamlessly interoperates with other CLR code.

Language

Special forms

	(let (bindings*) body*) where bindings follow a pattern of
(name initial-value) creates a lexical scope, evaluates initial
values, binds them to corresponding names and evaluates the body,
returning the value of last expression. Naggum’s let is a loner:
every one is inherently iterative (like let*) and recursive
(like let rec).

	(defun name (parms*) body*) defines a function (internally it
will be a public static method). Naggum is a Lisp-2, henceforth a
function and a variable can share their names.

	(if condition if-true [if-false]) evaluates given condition.
If it is true (as in “not null, not zero, not false”) it evaluates
if-true form and returns it’s result. If condition evaluates
to false, null or zero then if-false form (if given) is
evaluated and it’s result (or null, if no if-false form is
given) is returned from if.

	(fun-name args*) applies function named fun-name to given
arguments.

	(new type-name args*) calls applicable constructor of type named
type-name with given arguments and returns created object.
(new (type-name generic-args*) args*) new form calls
applicable constructor of generic type named type-name, assuming
generic parameters in generic-args and with given arguments and
returns created object.

	(call method-name object-var args*) Performs virtual call of
method named method-name on object referenced by object-var
with given arguments.

	(lambda (parms*) body*) Constructs anonymous function with
parms as parameters and body as body and returns it as a
result.

	(eval form [environment]) evaluates form using supplied lexical
environment. If no environment is given, uses current one.

	(error error-type args*) throws an exception of error-type,
constructed with args.

	(try form (catch-forms*)) where catch-forms follow a pattern
of (error-type handle-form) tries to evaluate form. If any
error is encountered, evaluates handle-form with the most
appropriate error-type.

	(defmacro name (args*)) defines a macro that will be expanded at
compile time.

	(require namespaces*) states that namespaces should be used
to search for symbols.

	(cond (cond-clauses*)) where cond-clauses follow a pattern
of (condition form) sequentially evaluates conditions, until one
of them is evaluated to true, non-null or non-zero value, then
the corresponding form is evaluated and it’s result returned.

	(set var value) sets the value of var to value. var
can be a local variable, function parameter or a field of some
object.

Quoting

	(quote form) indicates simple quoting. form is returned
as-is.

	(quasi-quote form) returns form with unquote and
splice-unquote expressions inside evaluated and substituted with
their results accordingly

	(unquote form) if encountered in quasi-quote form, will be
substituted by a result of form evaluation

	(splice-unquote form) same as unquote, but if form
evaluation result is a list, then it’s elements will be spliced as an
elements of the containing list.

Type declaration forms

	(deftype type-name ([parent-types*]) members*) Defines CLR type,
inheriting from parent-types with defined members.

	(deftype (type-name generic-parms*) ([parent-types*]) members*)
Defines generic CLR type, polymorphic by generic-parms,
inheriting from parent-types with defined members.

	(definterface type-name ([parent-types*]) members*) Defines CLR
interface type, inheriting from parent-types with defined
members.

	(definterface (type-name generic-parms*) ([parent-types*]) members*)
Defines generic CLR interface type, polymorphic by generic-parms,
inheriting from parent-types with defined members.

If no parent-types is supplied, System.Object is assumed.

Member declaration forms

	(field [access-type] field-name) declares a field with name given
by field-name and access permissions defined by access-type.

	(method [access-type] method-name (parms*) body*) declares an
instance method. Otherwise identical to defun.

Available values for access-type are public(available to
everybody), internal(available to types that inherit from this
type) and private(available only to methods in this type). If no
access-type is given, private is assumed.

Standard library

Naggum is designed to use CLR standard libraries, but some types and
routines are provided to facilitate lisp-style programming.

Cons

Cons-cell is the most basic building block of complex data structures.
It contains exactly two objects of any types, referenced as CAR (left
part, head) and CDR (right part, tail)

Symbol

Symbol is a type that represents language primitives like variable,
function and type names.

Naggum Reader

Reader reads Lisp objects from any input stream, returning them as lists
and atoms.

Naggum Writer

Writer writes Lisp objects to any output stream, performing output
formatting if needed.

Index

 nav.xhtml

 Table of Contents

 		
 Naggum documentation

 		
 About

 		
 Disclaimer

 		
 Features

 		
 Contribute

 		
 License

 		
 Build guide

 		
 Windows

 		
 Linux

 		
 NixOS Linux

 		
 Documentation

 		
 Naggum usage

 		
 Naggum Compiler

 		
 Naggum Assembler

 		
 S-expression syntax

 		
 Low-level syntax

 		
 Assembly definition

 		
 Method definition

 		
 CIL instructions

 		
 Example assembly definition

 		
 High-level syntax

 		
 Naggum Specification

 		
 Features

 		
 Language

 		
 Special forms

 		
 Quoting

 		
 Type declaration forms

 		
 Member declaration forms

 		
 Standard library

 		
 Cons

 		
 Symbol

 		
 Naggum Reader

 		
 Naggum Writer

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

